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ABSTRACTAs the re
ent denial-of-servi
e atta
ks on several major In-ternet sites have shown us, no open 
omputer network isimmune from intrusions. The wireless ad-ho
 network isparti
ularly vulnerable due to its features of open medium,dynami
 
hanging topology, 
ooperative algorithms, la
k of
entralized monitoring and management point, and la
k ofa 
lear line of defense. Many of the intrusion dete
tion te
h-niques developed on a �xed wired network are not appli
ablein this new environment. How to do it di�erently and ef-fe
tively is a 
hallenging resear
h problem. In this paper,we �rst examine the vulnerabilities of a wireless ad-ho
 net-work, the reason why we need intrusion dete
tion, and thereason why the 
urrent methods 
annot be applied dire
tly.We then des
ribe the new intrusion dete
tion and responseme
hanisms that we are developing for wireless ad-ho
 net-works.
1. INTRODUCTIONA wireless ad-ho
 network 
onsists of a 
olle
tion of \peer"mobile nodes that are 
apable of 
ommuni
ating with ea
hother without help from a �xed infrastru
ture. The inter-
onne
tions between nodes are 
apable of 
hanging on a 
on-tinual and arbitrary basis. Nodes within ea
h other's radiorange 
ommuni
ate dire
tly via wireless links, while thosethat are far apart use other nodes as relays. Nodes usuallyshare the same physi
al media; they transmit and a
quiresignals at the same frequen
y band, and follow the samehopping sequen
e or spreading 
ode. The data-link-layerfun
tions manage the wireless link resour
es and 
oordinatemedium a

ess among neighboring nodes. The medium a
-
ess 
ontrol (MAC) proto
ol is essential to a wireless ad-ho
network be
ause it allows mobile nodes to share a 
ommonbroad
ast 
hannel. The network-layer fun
tions maintainthe multi-hop 
ommuni
ation paths a
ross the network; allnodes must fun
tion as routers that dis
over and maintainroutes to other nodes in the network. Mobility and volatil-ity are hidden from the appli
ations so that any node 
an
ommuni
ate with any other node as if everyone were in a

�xed wired network. Appli
ations of ad-ho
 networks rangefrom military ta
ti
al operations to 
ivil rapid deploymentsu
h as emergen
y sear
h-and-res
ue missions, data 
olle
-tion/sensor networks, and instantaneous 
lassroom/meetingroom appli
ations.The nature of wireless ad-ho
 networks makes them veryvulnerable to an adversary's mali
ious atta
ks. First of all,the use of wireless links renders a wireless ad-ho
 networksus
eptible to atta
ks ranging from passive eavesdropping toa
tive interfering. Unlike wired networks where an adver-sary must gain physi
al a

ess to the network wires or passthrough several lines of defense at �rewalls and gateways,atta
ks on a wireless ad-ho
 network 
an 
ome from all di-re
tions and target at any node. Damages 
an in
lude leak-ing se
ret information, message 
ontamination, and nodeimpersonation. All these mean that a wireless ad-ho
 net-work will not have a 
lear line of defense, and every nodemust be prepared for en
ounters with an adversary dire
tlyor indire
tly.Se
ond, mobile nodes are autonomous units that are 
apa-ble of roaming independently. This means that nodes withinadequate physi
al prote
tion are re
eptive to being 
ap-tured, 
ompromised, and hija
ked. Sin
e tra
king down aparti
ular mobile node in a large s
ale ad-ho
 network 
an-not be done easily, atta
ks by a 
ompromised node fromwithin the network are far more damaging and mu
h harderto dete
t. Therefore, any node in a wireless ad-ho
 networkmust be prepared to operate in a mode that trusts no peer.Third, de
ision-making in ad-ho
 networks is usually de
en-tralized and many ad-ho
 network algorithms rely on the
ooperative parti
ipation of all nodes. The la
k of 
entral-ized authority means that the adversaries 
an exploit thisvulnerability for new types of atta
ks designed to break the
ooperative algorithms.For example, the 
urrent MAC proto
ols for wireless ad-ho
 networks are all vulnerable. Although there are manyMAC proto
ols, the basi
 working prin
iples are similar. Ina 
ontention-based method, ea
h node must 
ompete for
ontrol of the transmission 
hannel ea
h time it sends a mes-sage. Nodes must stri
tly follow the pre-de�ned pro
edureto avoid 
ollisions or to re
over from them. In a 
ontention-free method, ea
h node must seek from all other nodes aunanimous promise of an ex
lusive use of the 
hannel re-sour
e, on a one-time or re
urring basis. Regardless of the
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type of MAC proto
ol, if a node behaves mali
iously, theMAC proto
ol 
an break down in a s
enario resembling adenial-of-servi
e atta
k. Although su
h atta
ks are rare inwired networks be
ause the physi
al networks and the MAClayer are isolated from the outside world by layer-3 gate-ways/�rewalls, every mobile node is 
ompletely vulnerablein the wireless open medium.Ad-ho
 routing presents another vulnerability. Most ad-ho
routing proto
ols are also 
ooperative in nature[14℄. Un-like with a wired network, where extra prote
tion 
an bepla
ed on routers and gateways, an adversary who hija
ksan ad-ho
 node 
ould paralyze the entire wireless network bydisseminating false routing information. Worse, su
h falserouting information 
ould result in messages from all nodesbeing fed to the 
ompromised node.Intrusion prevention measures, su
h as en
ryption and au-thenti
ation, 
an be used in ad-ho
 networks to redu
e intru-sions, but 
annot eliminate them. For example, en
ryptionand authenti
ation 
annot defend against 
ompromised mo-bile nodes, whi
h 
arry the private keys. Integrity validationusing redundant information (from di�erent nodes), su
h asthose being used in se
ure routing [16, 17℄, also relies onthe trustworthiness of other nodes, whi
h 
ould likewise bea weak link for sophisti
ated atta
ks.The history of se
urity resear
h has taught us a valuable les-son { no matter how many intrusion prevention measures areinserted in a network, there are always some weak links thatone 
ould exploit to break in. Intrusion dete
tion presentsa se
ond wall of defense and it is a ne
essity in any high-survivability network.In summary, a wireless ad-ho
 network has inherent vulner-abilities that are not easily preventable. To build a highlyse
ure wireless ad-ho
 network, we need to deploy intrusiondete
tion and response te
hniques, and further resear
h isne
essary to adapt these te
hniques to this new environ-ment, from their original appli
ations in �xed wired network.In this paper, we propose our new model for intrusion de-te
tion and response in mobile, ad-ho
 wireless networks.We are 
urrently investigating the use of 
ooperative statis-ti
al anomaly dete
tion models for prote
tion from atta
kson ad-ho
 routing proto
ols, on wireless MAC proto
ols, oron wireless appli
ations and servi
es. We are integratingthem into a 
ross-layer defense system and are investigatingits e�e
tiveness, eÆ
ien
y, and s
alability.
2. BACKGROUND OF INTRUSION DETEC-

TIONAs network-based 
omputer systems play in
reasingly vitalroles in modern so
iety, they have be
ome the targets ofour enemies and 
riminals. When an intrusion (de�ned as\any set of a
tions that attempt to 
ompromise the integrity,
on�dentiality, or availability of a resour
e" [4℄) takes pla
e,intrusion prevention te
hniques, su
h as en
ryption and au-thenti
ation (e.g., using passwords or biometri
s), are usu-ally the �rst line of defense. However, intrusion preven-tion alone is not suÆ
ient be
ause as systems be
ome evermore 
omplex, while se
urity is still often the after-thought,there are always exploitable weaknesses in the systems dueto design and programming errors, or various \so
ially engi-

neered" penetration te
hniques (as illustrated in the re
ent\I Love You" virus). For example, even though they were�rst reported many years ago, exploitable \bu�er over
ow"se
urity holes, whi
h 
an lead to an unauthorized root shell,still exist in some re
ent system softwares. Furthermore, asillustrated by re
ent Distributed Denial-of-Servi
es (DDOS)atta
ks laun
hed against several major Internet sites wherese
urity measures were in pla
e, the proto
ols and systemsthat are designed to provide servi
es (to the publi
) are in-herently subje
t to atta
ks su
h as DDOS. Intrusion dete
-tion 
an be used as a se
ond wall to prote
t network systemsbe
ause on
e an intrusion is dete
ted, e.g., in the early stageof a DDOS atta
k, response 
an be put into pla
e to min-imize damages, gather eviden
e for prose
ution, and evenlaun
h 
ounter-atta
ks.The primary assumptions of intrusion dete
tion are: userand program a
tivities are observable, for example via sys-tem auditing me
hanisms; and more importantly, normaland intrusion a
tivities have distin
t behavior. Intrusiondete
tion therefore involves 
apturing audit data and rea-soning about the eviden
e in the data to determine whetherthe system is under atta
k. Based on the type of auditdata used, intrusion dete
tion systems (IDSs) 
an be 
ate-gorized as network-based or host-based. A network-basedIDS normally runs at the gateway of a network and \
ap-tures" and examines network pa
kets that go through thenetwork hardware interfa
e. A host-based IDS relies on op-erating system audit data to monitor and analyze the eventsgenerated by programs or users on the host. Intrusion de-te
tion te
hniques 
an be 
ategorized into misuse dete
tionand anomaly dete
tion.Misuse dete
tion systems, e.g., IDIOT [8℄ and STAT [5℄,use patterns of well-known atta
ks or weak spots of the sys-tem to mat
h and identify known intrusions. For example,a signature rule for the \guessing password atta
k" 
an be\there are more than 4 failed login attempts within 2 min-utes". The main advantage of misuse dete
tion is that it 
ana

urately and eÆ
iently dete
t instan
es of known atta
ks.The main disadvantage is that it la
ks the ability to dete
tthe truly innovative (i.e., newly invented) atta
ks.Anomaly dete
tion systems, for example, IDES [12℄, 
agobserved a
tivities that deviate signi�
antly from the es-tablished normal usage pro�les as anomalies, i.e., possibleintrusions. For example, the normal pro�le of a user may
ontain the averaged frequen
ies of some system 
ommandsused in his or her login sessions. If for a session that is beingmonitored, the frequen
ies are signi�
antly lower or higher,then an anomaly alarm will be raised. The main advantageof anomaly dete
tion is that it does not require prior knowl-edge of intrusion and 
an thus dete
t new intrusions. Themain disadvantage is that it may not be able to des
ribewhat the atta
k is and may have high false positive rate.Con
eptually, an intrusion dete
tion model, i.e., a misusedete
tion rule or a normal pro�le, has these two 
omponents:� the features (or attributes, measures), e.g., \the num-ber of failed login attempts", \the averaged frequen
yof the g

 
ommand", et
., that together des
ribe alogi
al event, e.g., a user login session;
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� themodeling algorithm, e.g., rule-based pattern mat
h-ing, that uses the features to identify intrusions.De�ning a set of predi
tive features that a

urately 
apturethe representative behaviors of intrusive or normal a
tivitiesis the most important step in building an e�e
tive intrusiondete
tion model, and 
an be independent of the design ofmodeling algorithms.In 1998, DARPA (U.S. Defense Advan
ed Resear
h Proje
tsAgen
y) sponsored the �rst Intrusion Dete
tion Evaluationto survey the state-of-the-art of resear
h in intrusion dete
-tion [11℄. The results indi
ated that the resear
h systemswere mu
h more e�e
tive than the leading 
ommer
ial sys-tems. However, even the best resear
h systems failed todete
t a large number of new atta
ks, in
luding those thatled to unauthorized user or root a

ess.It is very obvious that the enemies, knowing that intrusionprevention and dete
tion systems are installed in our net-works, will attempt to develop and laun
h new types of at-ta
ks. In anti
ipation of these trends, IDS resear
hers aredesigning new sensors and hen
e new audit data sour
esand features, new anomaly dete
tion algorithms, te
hniquesfor 
ombining anomaly and misuse dete
tion, and systemar
hite
tures for dete
ting distributed and 
oordinated in-trusions.
3. PROBLEMS OF CURRENT IDS TECH-

NIQUESThe vast di�eren
e between the two networks makes it verydiÆ
ult to apply intrusion dete
tion te
hniques developedfor a �xed wired network to an ad-ho
 wireless network.The most important di�eren
e is perhaps that the latterdoes not have a �xed infrastru
ture, and today's network-based IDSs, whi
h rely on real-time traÆ
 analysis, 
an nolonger fun
tion well in the new environment. Comparedwith wired networks where traÆ
 monitoring is usually doneat swit
hes, routers and gateways, an ad-ho
 network doesnot have su
h traÆ
 
on
entration points where the IDS
an 
olle
t audit data for the entire network. Therefore, atany one time, the only available audit tra
e will be limitedto 
ommuni
ation a
tivities taking pla
e within the radiorange, and the intrusion dete
tion algorithms must be madeto work on this partial and lo
alized information.The se
ond big di�eren
e is in the 
ommuni
ation patternin a wireless ad-ho
 network. Wireless users tend to bestingy about 
ommuni
ation due to slower links, limitedbandwidth, higher 
ost, and battery power 
onstraints. Dis-
onne
ted operations [15℄ are very 
ommon in wireless net-work appli
ations, and so is lo
ation-dependent 
omputingor other te
hniques that are solely designed for wireless net-works and seldom used in the wired environment. All thesesuggest that the anomaly models for wired network 
annotbe used, as is, in this new environment.Furthermore, there may not be a 
lear separation betweennormal
y and anomaly in wireless ad-ho
 networks. A nodethat sends out false routing information 
ould be the onethat has been 
ompromised, or merely the one that is tem-porarily out of syn
 due to volatile physi
al movement. In-

trusion dete
tion may �nd it in
reasingly diÆ
ult to distin-guish false alarms from real intrusions.In summary, we must answer the following resear
h ques-tions in developing a viable intrusion dete
tion system forwireless ad-ho
 networks:� What is a good system ar
hite
ture for building in-trusion dete
tion and response systems that �ts thefeatures of wireless ad-ho
 networks?� What are the appropriate audit data sour
es? How dowe dete
t anomaly based on partial, lo
al audit tra
es{ if they are the only reliable audit sour
e?� What is a good model of a
tivities in a wireless 
ommu-ni
ation environment that 
an separate anomaly whenunder atta
ks from the normal
y?For the rest of this paper we will address these 
hallengingproblems.
4. NEW ARCHITECTUREIntrusion dete
tion and response systems should be bothdistributed and 
ooperative to suite the needs of wirelessad-ho
 networks. In our proposed ar
hite
ture (Figure 1),every node in the wireless ad-ho
 network parti
ipates inintrusion dete
tion and response. Ea
h node is responsiblefor dete
ting signs of intrusion lo
ally and independently,but neighboring nodes 
an 
ollaboratively investigate in abroader range.In the systems aspe
t, individual IDS agents are pla
ed onea
h and every node. Ea
h IDS agent runs independentlyand monitors lo
al a
tivities (in
luding user and systemsa
tivities, and 
ommuni
ation a
tivities within the radiorange). It dete
ts intrusion from lo
al tra
es and initiatesresponse. If anomaly is dete
ted in the lo
al data, or ifthe eviden
e is in
on
lusive and a broader sear
h is war-ranted, neighboring IDS agents will 
ooperatively parti
i-pate in global intrusion dete
tion a
tions. These individualIDS agent 
olle
tively form the IDS system to defend thewireless ad-ho
 network.The internal of an IDS agent 
an be fairly 
omplex, but
on
eptually it 
an be stru
tured into six pie
es (Figure 2).The data 
olle
tion module is responsible for gathering lo-
al audit tra
es and a
tivity logs. Next, the lo
al dete
tionengine will use these data to dete
t lo
al anomaly. Dete
-tion methods that need broader data sets or that require
ollaborations among IDS agents will use the 
ooperativedete
tion engine. Intrusion response a
tions are providedby both the lo
al response and global response modules.The lo
al response module triggers a
tions lo
al to this mo-bile node, for example an IDS agent alerting the lo
al user,while the global one 
oordinates a
tions among neighbor-ing nodes, su
h as the IDS agents in the network ele
tinga remedy a
tion. Finally, a se
ure 
ommuni
ation moduleprovides a high-
on�den
e 
ommuni
ation 
hannel amongIDS agents.
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4.1 Data CollectionThe �rst module, lo
al data 
olle
tion, gathers streams ofreal-time audit data from various sour
es. Depending on theintrusion dete
tion algorithms, these useful data streams 
anin
lude system and user a
tivities within the mobile node,
ommuni
ation a
tivities by this node, as well as 
ommuni-
ation a
tivities within the radio range and observable bythis node. Therefore, multiple data 
olle
tion modules 
an
oexist in one IDS agents to provide multiple audit streamsfor a multi-layer integrated intrusion dete
tion method (Se
-tion 6).
4.2 Local DetectionThe lo
al dete
tion engine analyzes the lo
al data tra
esgathered by the lo
al data 
olle
tion module for eviden
eof anomalies. Be
ause it is 
on
eivable that the number ofnewly 
reated atta
k types mounted on wireless networkswill in
rease qui
kly as more and more network applian
esbe
ome wireless, we 
annot simply employ a few expert rulesthat are only 
apable of dete
ting the few known types ofatta
k. Furthermore, updating the rule-base with new de-

te
tion rules a
ross a wireless ad-ho
 network in a se
ure andreliable manner is never easy. Therefore, we believe that theIDS for a wireless ad-ho
 network should mainly use statisti-
al anomaly dete
tion te
hniques. In general, the pro
edureof building su
h an anomaly dete
tion model is the follow-ing:� the normal pro�les (i.e., the normal behavior patterns)are 
omputed using tra
e data from a \training" pro-
ess where all a
tivities are normal;� the deviations from the normal pro�les are re
ordedduring a \testing" pro
ess where some normal and ab-normal a
tivities (if available) are in
luded;� a dete
tion model is 
omputed from the deviation datato distinguish normal
y and anomalies; although therewill always be \new" normal a
tivities that have notbeen observed before, their deviations from the normalpro�les should be mu
h smaller than those of intru-sions.In previous work on �xed wired networks [10℄, we have devel-oped eÆ
ient data mining algorithms for 
omputing normaltraÆ
 patterns from TCP/IP tra
e data (i.e., t
pdump [6℄output), as well as 
lassi�
ation te
hniques for building mis-use and anomaly dete
tion models. The results from the1998 DARPA Evaluation showed that the dete
tion modelsprodu
ed by our system had one of the best overall perfor-man
es among the parti
ipating systems. The main 
hal-lenges here are how to de�ne the tra
e data, and how to de-termine the types of patterns that best des
ribe the normalbehavior. While there are many anomaly dete
tion modelsfor user behavior and system a
tivities (e.g., [2, 3, 9℄), ourfo
us here is on new models for wireless ad-ho
 networks(Se
tion 5).
4.3 Cooperative DetectionAny node that dete
ts lo
ally a known intrusion or anomalywith strong eviden
e (i.e., the dete
tion rule triggered has avery high a

ura
y rate), 
an determine independently thatthe network is under atta
k and 
an initiate a response.However, if a node dete
ts an anomaly or intrusion with
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weak eviden
e, or the eviden
e is in
on
lusive but warrantsbroader investigation, it 
an initiate a 
ooperative globalintrusion dete
tion pro
edure. This pro
edure works bypropagating the intrusion dete
tion state information amongneighboring nodes (or further downward if ne
essary).The intrusion dete
tion state information 
an range from amere level-of-
on�den
e value su
h as� \With p% 
on�den
e, node A 
on
ludes from its lo
aldata that there is an intrusion"� \With p% 
on�den
e, node A 
on
ludes from its lo
aldata and neighbor states that there is an intrusion"� \With p% 
on�den
e, node A, B, C, ... 
olle
tively
on
lude that there is an intrusion"to a more spe
i�
 state that lists the suspe
ts, like� \With p% 
on�den
e, node A 
on
ludes from its lo
aldata that node X has been 
ompromised"or to a 
ompli
ated re
ord in
luding the 
omplete eviden
e.As the next step, we 
an derive a distributed 
onsensusalgorithm to 
ompute a new intrusion dete
tion state forthis node, using other nodes' state information re
eived re-
ently. The algorithm 
an in
lude a weighted 
omputationunder the assumption that nearby nodes have greater e�e
tsthan far away nodes, i.e., giving the immediate neighbors thehighest values in evaluating the intrusion dete
tion states.For example, a majority-based distributed intrusion dete
-tion pro
edure 
an in
lude the following steps:� the node sends to neighboring node an \intrusion (oranomaly) state request";� ea
h node (in
luding the initiation node) then propa-gates the state information, indi
ating the likelihoodof an intrusion or anomaly, to its immediate neighbors;� ea
h node then determines whether the majority of there
eived reports indi
ate an intrusion or anomaly; ifyes, then it 
on
ludes that the network is under atta
k;� any node that dete
ts an intrusion to the network 
anthen initiate the response pro
edure.The rationales behind this s
heme are as follows. Auditdata from other nodes 
annot be trusted and should not beused be
ause the 
ompromised nodes 
an send falsi�ed data.However, the 
ompromised nodes have no in
entives to sendreports of intrusion/anomaly be
ause the intrusion responsemay result in their expulsion from the network. Therefore,unless the majority of the nodes are 
ompromised, in whi
h
ase one of the legitimate nodes will probably be able to de-te
t the intrusion with strong eviden
e and will respond, theabove s
heme 
an dete
t intrusion even when the eviden
eat individual nodes is weak.

A wireless network is highly dynami
 be
ause nodes 
anmove in and out of the network. Therefore, while ea
h nodeuses intrusion/anomaly reports from other nodes, it does notrely on �xed network topology or membership informationin the distributed dete
tion pro
ess. It is a simple majorityvoting s
heme where any node that dete
ts an intrusion 
aninitiate a response.
4.4 Intrusion ResponseThe type of intrusion response for wireless ad-ho
 networksdepends on the type of intrusion, the type of network pro-to
ols and appli
ations, and the 
on�den
e (or 
ertainty) inthe eviden
e. For example, here is a few likely response:� Re-initializing 
ommuni
ation 
hannels between nodes(e.g, for
e re-key).� Identifying the 
ompromised nodes and re-organizingthe network to pre
lude the promised nodes.For example, the IDS agent 
an notify the end-user, whomay in turn do his/her own investigation and take appropri-ate a
tion. It 
an also send a \re-authenti
ation" request toall nodes in the network to prompt the end-users to authenti-
ate themselves (and hen
e their wireless nodes), using out-of-bound me
hanisms (like, for example, visual 
onta
ts).Only the re-authenti
ated nodes, whi
h may 
olle
tively ne-gotiate a new 
ommuni
ation 
hannel, will re
ognize ea
hother as legitimate. That is, the 
ompromised/mali
iousnodes 
an be ex
luded.
5. ANOMALY DETECTION IN WIRELESS

AD-HOC NETWORKSIn this se
tion, we dis
uss how to build anomaly dete
tionmodels for wireless networks. Dete
tion based on a
tivitiesin di�erent network layers may di�er in the format and theamount of available audit data as well as the modeling algo-rithms. However, we believe that the prin
iple behind theapproa
hes will be the same. To illustrate our approa
h, wefo
us our dis
ussions on ad-ho
 routing proto
ols.
5.1 Detecting Abnormal Updates to Routing

TablesThe main requirement of an anomaly dete
tion model is lowfalse positive rate, 
al
ulated as the per
entage of normal
yvariations dete
ted as anomalies, and high true positive rate,
al
ulated as the per
entage of anomalies dete
ted. We needto �rst determine the tra
e data to be used that will bear evi-den
e of normal
y or anomaly. For ad-ho
 routing proto
ols,sin
e the main 
on
ern is that the false routing informationgenerated by a 
ompromised node will be disseminated toand used by other nodes, we 
an de�ne the tra
e data to de-s
ribe, for ea
h node, the normal (i.e., legitimate) updatesof routing information.A routing table usually 
ontains, at the minimum, the nexthop to ea
h destination node and the distan
e (number ofhops). A legitimate 
hange in the routing table 
an be
aused by the physi
al movement(s) of node(s) or networkmembership 
hanges. For a node, its own movement and the
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Distan
e Dire
tion Velo
ity PCR PCH0.01 S 0.1 20 1510 S 20 80 500.02 N 0.1 0 0... ... ... ... ...Table 1: Sample Tra
e Data for Ad-Ho
 Routing
hange in its own routing table are the only reliable informa-tion that it 
an trust. Hen
e, we use data on the node's phys-i
al movements and the 
orresponding 
hange in its routingtable as the basis of the tra
e data. The physi
al movementis measured by distan
e, dire
tion, and velo
ity (this data
an be obtained by a built-in GPS devi
e). The routing ta-ble 
hange is measured by the per
entage of 
hanged routes(PCR), and the (positive or negative) per
entage of 
hangesin the sum of hops of all the routes (PCH). We use per-
entages as measurements be
ause of the dynami
 nature ofwireless networks (i.e., the number of nodes/routes is not�xed). Table 1 shows some �
tional tra
e data for a node.During the \training" pro
ess, where a diversity of normalsituations are simulated, the tra
e data is gathered for ea
hnode. The tra
e data sets of all nodes in the training networkare then aggregated into a single data set, whi
h des
ribesall normal 
hanges in routing tables for all the nodes. Adete
tion model whi
h is learned from this aggregated dataset will therefore be 
apable of operating on any node in thenetwork.A normal pro�le on the tra
e data in e�e
t spe
i�es the 
or-relation of physi
al movements of the node and the 
hangesin the routing table. We 
an use the following s
heme to
ompute the normal pro�le:� denote PCR the 
lass (i.e. 
on
ept), and distan
e, di-re
tion, velo
ity, and PCH the features des
ribing the
on
ept;� use n 
lasses to represent the PCR values in n ranges,for example, we 
an use 10 
lasses ea
h representing10 per
entage points { that is, the tra
e data belongsto n 
lasses;� apply a 
lassi�
ation algorithm to the data to learn a
lassi�er for PCR;� repeat the above for PCH, that is, learn a 
lassi�er forPCH;A 
lassi�
ation algorithm, e.g., RIPPER [1℄, 
an use themost dis
riminating feature values to des
ribe ea
h 
on
ept.For example, when using PCR as the 
on
ept, RIPPER 
anoutput 
lassi�
ation rules in the form of: \if (distan
e �0.01 AND PCH � 20) then PCR = 2; else if ...". Ea
h
lassi�
ation rule (an \if") has a \
on�den
e" value, 
al
u-lated as the per
entage of re
ords that mat
h both the rule
ondition and rule 
on
lusion out of those that mat
h therule 
ondition. The 
lassi�
ation rules for PCR and PCHtogether des
ribe what are the (normal) 
onditions that 
or-relate with the (amount of) routing table 
hanges. We usethese rules as the normal pro�les.

PCR deviation PCH deviation Class0.0 0.0 normal0.1 0.0 normal0.2 0.2 normal0.9 0.5 abnormal0.3 0.1 normal... ... ...Table 2: Sample Deviation DataChe
king an observed tra
e data re
ord (that re
ords a rout-ing table update) with the pro�le involves applying the 
las-si�
ation rules to the re
ord. A mis
lassi�
ation, e.g., whenthe rules say it is \PCR = 3" but in fa
t it is \PCR = 5",is 
ounted as a violation. We 
an use the \
on�den
e" ofthe violated rule as the \deviation s
ore" of the re
ord. Inthe \testing" pro
ess, the deviation s
ores are re
orded. Forexample, if abnormal data is available, we 
an have devia-tion data like those shown in Table 2. We 
an then apply a
lassi�
ation algorithm to 
ompute a 
lassi�er, a dete
tionmodel, that uses the deviation s
ores to distinguish abnor-mal from normal.If abnormal data is not available, we 
an 
ompute the nor-mal 
lusters of the deviation s
ores, where ea
h s
ore pair isrepresented by a point (PCR deviation, PCH deviation) inthe two-dimensional spa
e, e.g., (0.0, 0.0), (0.2, 0.2), (0.3,0.1), et
. The \outliers", i.e., those that do not belong toany normal 
luster, 
an then be 
onsidered as anomalies.Clustering is often referred to as \un-supervised learning"be
ause the target 
lusters are not known a priori. Its dis-advantage is that the 
omputation (i.e., the formation) of
lusters is very time 
onsuming. If the appli
ation envi-ronment allows a tolerable false alarm rate, e.g., 2%, thenthe 
lustering algorithm 
an be parameterized to terminatewhen suÆ
ient, e.g., greater than 98%, points are in proper
lusters.A poor performan
e of the anomaly dete
tion model, e.g., ahigher than a

eptable false alarm rate, indi
ates that thedata gathering (in
luding both \training" and \testing" pro-
esses) is not suÆ
ient, and/or the features and the model-ing algorithms need to be re�ned. Therefore, repeated trialsmay be needed before a good anomaly dete
tion model isprodu
ed.In the dis
ussion thus far, we have used only the minimalrouting table information in the anomaly dete
tion modelto illustrate our approa
h, whi
h 
an be applied to all rout-ing proto
ols. For a spe
i�
 proto
ol, we 
an use additionalrouting table information and in
lude new features in thedete
tion model to improve the performan
e. For example,for DSR ad-ho
 routing proto
ol [7, 13℄, we 
an add sour
eroute information (the 
omplete, ordered sequen
e of net-work hops leading to the destination). We 
an also add pre-di
tive features a

ording to the \temporal and statisti
al"patterns among the routing table updates, following the sim-ilar feature 
onstru
tion pro
ess we used to build intrusiondete
tion models for wired networks [10℄. For example, fora wired TCP/IP network, a \SYN-
ood" DOS atta
k has apattern whi
h indi
ates that a lot of half-open 
onne
tionsare attempted against a servi
e in a short time span. A
-
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ordingly, a feature, \for the past 2 se
onds, the per
entageof 
onne
tions to the same servi
e that are half-open" was
onstru
ted and had been proved to be highly predi
tive.Similarly, in a wireless network, if an intrusion results in alarge number of routing table updates, we 
an add a featurethat measures the frequen
y (how often) the updates takepla
e.Our obje
tive in this study is to lead to a better understand-ing of the important and 
hallenging issues in intrusion de-te
tion for ad-ho
 routing proto
ols. First, using a given setof training, testing, and evaluation s
enarios, and modelingalgorithms (e.g., with RIPPER as the 
lassi�
ation algo-rithm for proto
ol tra
e data and \nearest neighbor" as the
lustering algorithm for deviation s
ores), we 
an identifywhi
h routing proto
ol, with potentially all its routing tableinformation used, 
an result in better performing dete
tionmodels. This will help answer the question \what informa-tion should be in
lude in the routing table to make intrusiondete
tion e�e
tive." This �nding 
an be used to design morerobust routing proto
ols. Next, using a given routing proto-
ol, we 
an explore the feature spa
e and algorithm spa
e to�nd the best performing model. This will give insight to thegeneral pra
ti
es of building intrusion dete
tion for wirelessnetworks.
5.2 Detecting Abnormal Activities in Other

LayersAnomaly dete
tion for other layers of the wireless networks,e.g., the MAC proto
ols, the appli
ations and servi
es, et
.,follows a similar approa
h. For example, the tra
e data forMAC proto
ols 
an 
ontain the following features: for thepast s se
onds, the total number of 
hannel requests, thetotal number of nodes making the requests, the largest, themean, and the smallest of all the requests, et
. The 
lass
an be the range (in the number) of the 
urrent requests bya node. A 
lassi�er on this tra
e data des
ribes the normal
ontext (i.e. history) of a request. An anomaly dete
tionmodel 
an then be 
omputed, as a 
lassi�er or 
lusters, fromthe deviation data.Similarly, at the wireless appli
ation layer, the tra
e data
an use the servi
e as the 
lass (i.e., one 
lass for ea
h ser-vi
e), and 
an 
ontain the following features: for the past sse
onds, the total number of requests to the same servi
e,the number of di�erent servi
es requested, the average dura-tion of the servi
e, the number of nodes that requested (any)servi
e, the total number of servi
e errors, et
. A 
lassi�eron the tra
e data then des
ribes for ea
h servi
e the normalbehaviors of its requests.Many atta
ks generate di�erent statisti
al patterns thannormal requests. Sin
e the features des
ribed above are de-signed to 
apture the statisti
al behavior of the requests, theatta
ks, when examined using the feature values, will havelarge deviations than the normal requests. For example,
ompared with normal requests to MAC or an appli
ation-level servi
e, DOS atta
ks via resour
e exhaustion normallyinvolve a huge number of requests in a very short period oftime; a DDOS has the additional tweak that it 
omes frommany di�erent nodes.

6. MULTI-LAYER INTEGRATED INTRU-
SION DETECTION AND RESPONSETraditionally, IDSs use data only from the lower layers:network-based IDSs analyze TCP/IP pa
ket data and host-based IDSs analyze system 
all data. This is be
ause inwired networks, appli
ation layer �rewalls 
an e�e
tivelyprevent many atta
ks, and appli
ation-spe
i�
 modules, e.g.,
redit 
ard fraud dete
tion systems, have also been devel-oped to guard the mission-
riti
al servi
es.In the wireless networks, there are no �rewalls to prote
tthe servi
es from atta
k. However, intrusion dete
tion inthe appli
ation layer is not only feasible, as dis
ussed in theprevious se
tion, but also ne
essary be
ause 
ertain atta
ks,for example, an atta
k that tries to 
reate an unauthorizeda

ess \ba
k-door" to a servi
e, may seem perfe
tly legiti-mate to the lower layers, e.g., the MAC proto
ols. We alsobelieve that some atta
ks may be dete
ted mu
h earlier inthe appli
ation layer, be
ause of the ri
her semanti
 infor-mation available, than in the lower layers. For example, fora DOS atta
k, the appli
ation layer may dete
t very qui
klythat a large number of in
oming servi
e 
onne
tions have noa
tual operations or the operations don't make sense (and
an be 
onsidered as errors); whereas the lower layers, whi
hrely only on information about the amount of network traf-�
 (or the number of 
hannel requests), may take a longerwhile to re
ognize the unusually high volume.Given that there are vulnerabilities in multiple layers ofwireless networks and that an intrusion dete
tion moduleneeds to be pla
ed at ea
h layer on ea
h node of a network,we need to 
oordinate the intrusion dete
tion and responsee�orts. We use the following integration s
heme:� if a node dete
ts an intrusion that a�e
ts the entirenetwork, e.g., when it dete
ts an atta
k on the adho
 routing proto
ols, it initiates the re-authenti
ationpro
ess to ex
lude the 
ompromised/mali
ious nodesfrom the network;� if a node dete
ts a (seemingly) lo
al intrusion at ahigher layer, e.g., when it dete
ts atta
ks to one ofits servi
es, lower layers are noti�ed. The dete
tionmodules there 
an then further investigate, e.g., byinitiating the dete
tion pro
ess on possible atta
ks onad ho
 routing proto
ols, and 
an respond to the at-ta
k by blo
king a

ess from the o�ending node(s) andnotifying other nodes in the network of the in
ident.In this approa
h, the intrusion dete
tion module at ea
hlayer still needs to fun
tion properly, but dete
tion on onelayer 
an be initiated or aided by eviden
e from other layers.As a �rst 
ut of our experimental resear
h, we allow theeviden
e to 
ow from one layer to its (next) lower layer bydefault, or to a spe
i�
 lower layer based on the appli
ationenvironment.The \augmented" versions of the dete
tion model at a lowerlevel are 
onstru
ted as follows. In the \testing" pro
ess,the anomaly de
ision, i.e., either 1 for \yes" or 0 for \no"from the upper layer is inserted into the deviation s
ore ofthe lower level, for example, (0.1, 0.1) now be
omes (0.1,
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0.1, 0). In other words, the deviation data also 
arries theextra information passed from the upper level. An anomalydete
tion model built from the augmented data therefore
ombines the bodies of eviden
e from the upper layers andthe 
urrent layer and 
an make a more informed de
ision.The intrusion report sent to other node for 
ooperative de-te
tion also in
ludes a ve
tor of the information from thelayers.With these new 
hanges, the lower layers now need morethan one anomaly dete
tion model: one that relies on thedata of the 
urrent layer and therefore indire
tly uses ev-iden
e from the lower layers, and the augmented one thatalso 
onsiders eviden
e from the upper layer.The multi-layer integration enables us to analyze the atta
ks
enario in its entirety and as a result, we 
an a
hieve bet-ter performan
e in terms of both higher true positive andlower false positive rates. For example, a likely atta
k s
e-nario is that an enemy takes 
ontrol of the mobile unit ofa user (by physi
ally disable him or her), and then usessome system 
ommands to send falsi�ed routing informa-tion. A dete
tion module that monitors user behavior, e.g.,via 
ommand usage, 
an dete
t this event and immediately(i.e., before further damage 
an be done) 
ause the dete
tionmodule for the routing proto
ols to initiate the global dete
-tion and response, whi
h 
an result in the ex
lusion of this
ompromised unit. As another example, suppose the usersare responding to a �re alarm, whi
h is a rare event and maythus 
ause a lot of unusual movements and hen
e updatesto the routing tables. However, if there is no indi
ation thata user or a system software has been 
ompromised, ea
h in-trusion report sent to other nodes will have a \
lean" ve
torof upper layer indi
ators, and thus the dete
tion module forthe routing proto
ols 
an 
on
lude that the unusual updatesmay be legitimate.
7. CONCLUSIONWe have argued that any se
ure network will have vulner-ability that an adversary 
ould exploit. This is espe
iallytrue for wireless ad-ho
 networks. Intrusion dete
tion 
an
ompliment intrusion prevention te
hniques (su
h as en
ryp-tion, authenti
ation, se
ure MAC, se
ure routing, et
.) toimprove the network se
urity. However new te
hniques mustbe developed to make intrusion dete
tion work better for thewireless ad-ho
 environment.Through our 
ontinuing investigation, we have shown thatan ar
hite
ture for better intrusion dete
tion in wireless ad-ho
 networks should be distributed and 
ooperative. A sta-tisti
al anomaly dete
tion approa
h should be used. Thetra
e analysis and anomaly dete
tion should be done lo-
ally in ea
h node and possibly through 
ooperation with allnodes in the network. Further, intrusion dete
tion shouldtake pla
e in all networking layers in an integrated 
ross-layer manner.Currently, we are 
ontinuing our investigation in the ar
hi-te
ture issues, the anomaly dete
tion model, and the multi-layer integration approa
h. For ar
hite
ture study, we arere�ning its design and plan to implement it and study itsperforman
e impli
ations. For anomaly dete
tion model, weare studying the e�e
tiveness and s
alability of our approa
h

for building anomaly dete
tion models for ad-ho
 routingproto
ols and for other layers of wireless networking. Inparti
ular, we will �rst fo
us on two questions about ad-ho
routing: what information a routing proto
ol should in
ludeto make intrusion dete
tion e�e
tive, and what is the bestanomaly dete
tion model for a given routing proto
ol. Fi-nally, we will study the e�e
tiveness gain (i.e., in dete
tionrate) with the multi-layer integration approa
h, as well asits performan
e penalties.
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