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ABSTRACTAs the reent denial-of-servie attaks on several major In-ternet sites have shown us, no open omputer network isimmune from intrusions. The wireless ad-ho network ispartiularly vulnerable due to its features of open medium,dynami hanging topology, ooperative algorithms, lak ofentralized monitoring and management point, and lak ofa lear line of defense. Many of the intrusion detetion teh-niques developed on a �xed wired network are not appliablein this new environment. How to do it di�erently and ef-fetively is a hallenging researh problem. In this paper,we �rst examine the vulnerabilities of a wireless ad-ho net-work, the reason why we need intrusion detetion, and thereason why the urrent methods annot be applied diretly.We then desribe the new intrusion detetion and responsemehanisms that we are developing for wireless ad-ho net-works.
1. INTRODUCTIONA wireless ad-ho network onsists of a olletion of \peer"mobile nodes that are apable of ommuniating with eahother without help from a �xed infrastruture. The inter-onnetions between nodes are apable of hanging on a on-tinual and arbitrary basis. Nodes within eah other's radiorange ommuniate diretly via wireless links, while thosethat are far apart use other nodes as relays. Nodes usuallyshare the same physial media; they transmit and aquiresignals at the same frequeny band, and follow the samehopping sequene or spreading ode. The data-link-layerfuntions manage the wireless link resoures and oordinatemedium aess among neighboring nodes. The medium a-ess ontrol (MAC) protool is essential to a wireless ad-honetwork beause it allows mobile nodes to share a ommonbroadast hannel. The network-layer funtions maintainthe multi-hop ommuniation paths aross the network; allnodes must funtion as routers that disover and maintainroutes to other nodes in the network. Mobility and volatil-ity are hidden from the appliations so that any node anommuniate with any other node as if everyone were in a

�xed wired network. Appliations of ad-ho networks rangefrom military tatial operations to ivil rapid deploymentsuh as emergeny searh-and-resue missions, data olle-tion/sensor networks, and instantaneous lassroom/meetingroom appliations.The nature of wireless ad-ho networks makes them veryvulnerable to an adversary's maliious attaks. First of all,the use of wireless links renders a wireless ad-ho networksuseptible to attaks ranging from passive eavesdropping toative interfering. Unlike wired networks where an adver-sary must gain physial aess to the network wires or passthrough several lines of defense at �rewalls and gateways,attaks on a wireless ad-ho network an ome from all di-retions and target at any node. Damages an inlude leak-ing seret information, message ontamination, and nodeimpersonation. All these mean that a wireless ad-ho net-work will not have a lear line of defense, and every nodemust be prepared for enounters with an adversary diretlyor indiretly.Seond, mobile nodes are autonomous units that are apa-ble of roaming independently. This means that nodes withinadequate physial protetion are reeptive to being ap-tured, ompromised, and hijaked. Sine traking down apartiular mobile node in a large sale ad-ho network an-not be done easily, attaks by a ompromised node fromwithin the network are far more damaging and muh harderto detet. Therefore, any node in a wireless ad-ho networkmust be prepared to operate in a mode that trusts no peer.Third, deision-making in ad-ho networks is usually deen-tralized and many ad-ho network algorithms rely on theooperative partiipation of all nodes. The lak of entral-ized authority means that the adversaries an exploit thisvulnerability for new types of attaks designed to break theooperative algorithms.For example, the urrent MAC protools for wireless ad-ho networks are all vulnerable. Although there are manyMAC protools, the basi working priniples are similar. Ina ontention-based method, eah node must ompete forontrol of the transmission hannel eah time it sends a mes-sage. Nodes must stritly follow the pre-de�ned proedureto avoid ollisions or to reover from them. In a ontention-free method, eah node must seek from all other nodes aunanimous promise of an exlusive use of the hannel re-soure, on a one-time or reurring basis. Regardless of the
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type of MAC protool, if a node behaves maliiously, theMAC protool an break down in a senario resembling adenial-of-servie attak. Although suh attaks are rare inwired networks beause the physial networks and the MAClayer are isolated from the outside world by layer-3 gate-ways/�rewalls, every mobile node is ompletely vulnerablein the wireless open medium.Ad-ho routing presents another vulnerability. Most ad-horouting protools are also ooperative in nature[14℄. Un-like with a wired network, where extra protetion an beplaed on routers and gateways, an adversary who hijaksan ad-ho node ould paralyze the entire wireless network bydisseminating false routing information. Worse, suh falserouting information ould result in messages from all nodesbeing fed to the ompromised node.Intrusion prevention measures, suh as enryption and au-thentiation, an be used in ad-ho networks to redue intru-sions, but annot eliminate them. For example, enryptionand authentiation annot defend against ompromised mo-bile nodes, whih arry the private keys. Integrity validationusing redundant information (from di�erent nodes), suh asthose being used in seure routing [16, 17℄, also relies onthe trustworthiness of other nodes, whih ould likewise bea weak link for sophistiated attaks.The history of seurity researh has taught us a valuable les-son { no matter how many intrusion prevention measures areinserted in a network, there are always some weak links thatone ould exploit to break in. Intrusion detetion presentsa seond wall of defense and it is a neessity in any high-survivability network.In summary, a wireless ad-ho network has inherent vulner-abilities that are not easily preventable. To build a highlyseure wireless ad-ho network, we need to deploy intrusiondetetion and response tehniques, and further researh isneessary to adapt these tehniques to this new environ-ment, from their original appliations in �xed wired network.In this paper, we propose our new model for intrusion de-tetion and response in mobile, ad-ho wireless networks.We are urrently investigating the use of ooperative statis-tial anomaly detetion models for protetion from attakson ad-ho routing protools, on wireless MAC protools, oron wireless appliations and servies. We are integratingthem into a ross-layer defense system and are investigatingits e�etiveness, eÆieny, and salability.
2. BACKGROUND OF INTRUSION DETEC-

TIONAs network-based omputer systems play inreasingly vitalroles in modern soiety, they have beome the targets ofour enemies and riminals. When an intrusion (de�ned as\any set of ations that attempt to ompromise the integrity,on�dentiality, or availability of a resoure" [4℄) takes plae,intrusion prevention tehniques, suh as enryption and au-thentiation (e.g., using passwords or biometris), are usu-ally the �rst line of defense. However, intrusion preven-tion alone is not suÆient beause as systems beome evermore omplex, while seurity is still often the after-thought,there are always exploitable weaknesses in the systems dueto design and programming errors, or various \soially engi-

neered" penetration tehniques (as illustrated in the reent\I Love You" virus). For example, even though they were�rst reported many years ago, exploitable \bu�er overow"seurity holes, whih an lead to an unauthorized root shell,still exist in some reent system softwares. Furthermore, asillustrated by reent Distributed Denial-of-Servies (DDOS)attaks launhed against several major Internet sites whereseurity measures were in plae, the protools and systemsthat are designed to provide servies (to the publi) are in-herently subjet to attaks suh as DDOS. Intrusion dete-tion an be used as a seond wall to protet network systemsbeause one an intrusion is deteted, e.g., in the early stageof a DDOS attak, response an be put into plae to min-imize damages, gather evidene for proseution, and evenlaunh ounter-attaks.The primary assumptions of intrusion detetion are: userand program ativities are observable, for example via sys-tem auditing mehanisms; and more importantly, normaland intrusion ativities have distint behavior. Intrusiondetetion therefore involves apturing audit data and rea-soning about the evidene in the data to determine whetherthe system is under attak. Based on the type of auditdata used, intrusion detetion systems (IDSs) an be ate-gorized as network-based or host-based. A network-basedIDS normally runs at the gateway of a network and \ap-tures" and examines network pakets that go through thenetwork hardware interfae. A host-based IDS relies on op-erating system audit data to monitor and analyze the eventsgenerated by programs or users on the host. Intrusion de-tetion tehniques an be ategorized into misuse detetionand anomaly detetion.Misuse detetion systems, e.g., IDIOT [8℄ and STAT [5℄,use patterns of well-known attaks or weak spots of the sys-tem to math and identify known intrusions. For example,a signature rule for the \guessing password attak" an be\there are more than 4 failed login attempts within 2 min-utes". The main advantage of misuse detetion is that it anaurately and eÆiently detet instanes of known attaks.The main disadvantage is that it laks the ability to detetthe truly innovative (i.e., newly invented) attaks.Anomaly detetion systems, for example, IDES [12℄, agobserved ativities that deviate signi�antly from the es-tablished normal usage pro�les as anomalies, i.e., possibleintrusions. For example, the normal pro�le of a user mayontain the averaged frequenies of some system ommandsused in his or her login sessions. If for a session that is beingmonitored, the frequenies are signi�antly lower or higher,then an anomaly alarm will be raised. The main advantageof anomaly detetion is that it does not require prior knowl-edge of intrusion and an thus detet new intrusions. Themain disadvantage is that it may not be able to desribewhat the attak is and may have high false positive rate.Coneptually, an intrusion detetion model, i.e., a misusedetetion rule or a normal pro�le, has these two omponents:� the features (or attributes, measures), e.g., \the num-ber of failed login attempts", \the averaged frequenyof the g ommand", et., that together desribe alogial event, e.g., a user login session;
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� themodeling algorithm, e.g., rule-based pattern math-ing, that uses the features to identify intrusions.De�ning a set of preditive features that aurately apturethe representative behaviors of intrusive or normal ativitiesis the most important step in building an e�etive intrusiondetetion model, and an be independent of the design ofmodeling algorithms.In 1998, DARPA (U.S. Defense Advaned Researh ProjetsAgeny) sponsored the �rst Intrusion Detetion Evaluationto survey the state-of-the-art of researh in intrusion dete-tion [11℄. The results indiated that the researh systemswere muh more e�etive than the leading ommerial sys-tems. However, even the best researh systems failed todetet a large number of new attaks, inluding those thatled to unauthorized user or root aess.It is very obvious that the enemies, knowing that intrusionprevention and detetion systems are installed in our net-works, will attempt to develop and launh new types of at-taks. In antiipation of these trends, IDS researhers aredesigning new sensors and hene new audit data souresand features, new anomaly detetion algorithms, tehniquesfor ombining anomaly and misuse detetion, and systemarhitetures for deteting distributed and oordinated in-trusions.
3. PROBLEMS OF CURRENT IDS TECH-

NIQUESThe vast di�erene between the two networks makes it verydiÆult to apply intrusion detetion tehniques developedfor a �xed wired network to an ad-ho wireless network.The most important di�erene is perhaps that the latterdoes not have a �xed infrastruture, and today's network-based IDSs, whih rely on real-time traÆ analysis, an nolonger funtion well in the new environment. Comparedwith wired networks where traÆ monitoring is usually doneat swithes, routers and gateways, an ad-ho network doesnot have suh traÆ onentration points where the IDSan ollet audit data for the entire network. Therefore, atany one time, the only available audit trae will be limitedto ommuniation ativities taking plae within the radiorange, and the intrusion detetion algorithms must be madeto work on this partial and loalized information.The seond big di�erene is in the ommuniation patternin a wireless ad-ho network. Wireless users tend to bestingy about ommuniation due to slower links, limitedbandwidth, higher ost, and battery power onstraints. Dis-onneted operations [15℄ are very ommon in wireless net-work appliations, and so is loation-dependent omputingor other tehniques that are solely designed for wireless net-works and seldom used in the wired environment. All thesesuggest that the anomaly models for wired network annotbe used, as is, in this new environment.Furthermore, there may not be a lear separation betweennormaly and anomaly in wireless ad-ho networks. A nodethat sends out false routing information ould be the onethat has been ompromised, or merely the one that is tem-porarily out of syn due to volatile physial movement. In-

trusion detetion may �nd it inreasingly diÆult to distin-guish false alarms from real intrusions.In summary, we must answer the following researh ques-tions in developing a viable intrusion detetion system forwireless ad-ho networks:� What is a good system arhiteture for building in-trusion detetion and response systems that �ts thefeatures of wireless ad-ho networks?� What are the appropriate audit data soures? How dowe detet anomaly based on partial, loal audit traes{ if they are the only reliable audit soure?� What is a good model of ativities in a wireless ommu-niation environment that an separate anomaly whenunder attaks from the normaly?For the rest of this paper we will address these hallengingproblems.
4. NEW ARCHITECTUREIntrusion detetion and response systems should be bothdistributed and ooperative to suite the needs of wirelessad-ho networks. In our proposed arhiteture (Figure 1),every node in the wireless ad-ho network partiipates inintrusion detetion and response. Eah node is responsiblefor deteting signs of intrusion loally and independently,but neighboring nodes an ollaboratively investigate in abroader range.In the systems aspet, individual IDS agents are plaed oneah and every node. Eah IDS agent runs independentlyand monitors loal ativities (inluding user and systemsativities, and ommuniation ativities within the radiorange). It detets intrusion from loal traes and initiatesresponse. If anomaly is deteted in the loal data, or ifthe evidene is inonlusive and a broader searh is war-ranted, neighboring IDS agents will ooperatively partii-pate in global intrusion detetion ations. These individualIDS agent olletively form the IDS system to defend thewireless ad-ho network.The internal of an IDS agent an be fairly omplex, butoneptually it an be strutured into six piees (Figure 2).The data olletion module is responsible for gathering lo-al audit traes and ativity logs. Next, the loal detetionengine will use these data to detet loal anomaly. Dete-tion methods that need broader data sets or that requireollaborations among IDS agents will use the ooperativedetetion engine. Intrusion response ations are providedby both the loal response and global response modules.The loal response module triggers ations loal to this mo-bile node, for example an IDS agent alerting the loal user,while the global one oordinates ations among neighbor-ing nodes, suh as the IDS agents in the network eletinga remedy ation. Finally, a seure ommuniation moduleprovides a high-on�dene ommuniation hannel amongIDS agents.
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Figure 2: A Coneptual Model for an IDS Agent
4.1 Data CollectionThe �rst module, loal data olletion, gathers streams ofreal-time audit data from various soures. Depending on theintrusion detetion algorithms, these useful data streams aninlude system and user ativities within the mobile node,ommuniation ativities by this node, as well as ommuni-ation ativities within the radio range and observable bythis node. Therefore, multiple data olletion modules anoexist in one IDS agents to provide multiple audit streamsfor a multi-layer integrated intrusion detetion method (Se-tion 6).
4.2 Local DetectionThe loal detetion engine analyzes the loal data traesgathered by the loal data olletion module for evideneof anomalies. Beause it is oneivable that the number ofnewly reated attak types mounted on wireless networkswill inrease quikly as more and more network applianesbeome wireless, we annot simply employ a few expert rulesthat are only apable of deteting the few known types ofattak. Furthermore, updating the rule-base with new de-

tetion rules aross a wireless ad-ho network in a seure andreliable manner is never easy. Therefore, we believe that theIDS for a wireless ad-ho network should mainly use statisti-al anomaly detetion tehniques. In general, the proedureof building suh an anomaly detetion model is the follow-ing:� the normal pro�les (i.e., the normal behavior patterns)are omputed using trae data from a \training" pro-ess where all ativities are normal;� the deviations from the normal pro�les are reordedduring a \testing" proess where some normal and ab-normal ativities (if available) are inluded;� a detetion model is omputed from the deviation datato distinguish normaly and anomalies; although therewill always be \new" normal ativities that have notbeen observed before, their deviations from the normalpro�les should be muh smaller than those of intru-sions.In previous work on �xed wired networks [10℄, we have devel-oped eÆient data mining algorithms for omputing normaltraÆ patterns from TCP/IP trae data (i.e., tpdump [6℄output), as well as lassi�ation tehniques for building mis-use and anomaly detetion models. The results from the1998 DARPA Evaluation showed that the detetion modelsprodued by our system had one of the best overall perfor-manes among the partiipating systems. The main hal-lenges here are how to de�ne the trae data, and how to de-termine the types of patterns that best desribe the normalbehavior. While there are many anomaly detetion modelsfor user behavior and system ativities (e.g., [2, 3, 9℄), ourfous here is on new models for wireless ad-ho networks(Setion 5).
4.3 Cooperative DetectionAny node that detets loally a known intrusion or anomalywith strong evidene (i.e., the detetion rule triggered has avery high auray rate), an determine independently thatthe network is under attak and an initiate a response.However, if a node detets an anomaly or intrusion with
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weak evidene, or the evidene is inonlusive but warrantsbroader investigation, it an initiate a ooperative globalintrusion detetion proedure. This proedure works bypropagating the intrusion detetion state information amongneighboring nodes (or further downward if neessary).The intrusion detetion state information an range from amere level-of-on�dene value suh as� \With p% on�dene, node A onludes from its loaldata that there is an intrusion"� \With p% on�dene, node A onludes from its loaldata and neighbor states that there is an intrusion"� \With p% on�dene, node A, B, C, ... olletivelyonlude that there is an intrusion"to a more spei� state that lists the suspets, like� \With p% on�dene, node A onludes from its loaldata that node X has been ompromised"or to a ompliated reord inluding the omplete evidene.As the next step, we an derive a distributed onsensusalgorithm to ompute a new intrusion detetion state forthis node, using other nodes' state information reeived re-ently. The algorithm an inlude a weighted omputationunder the assumption that nearby nodes have greater e�etsthan far away nodes, i.e., giving the immediate neighbors thehighest values in evaluating the intrusion detetion states.For example, a majority-based distributed intrusion dete-tion proedure an inlude the following steps:� the node sends to neighboring node an \intrusion (oranomaly) state request";� eah node (inluding the initiation node) then propa-gates the state information, indiating the likelihoodof an intrusion or anomaly, to its immediate neighbors;� eah node then determines whether the majority of thereeived reports indiate an intrusion or anomaly; ifyes, then it onludes that the network is under attak;� any node that detets an intrusion to the network anthen initiate the response proedure.The rationales behind this sheme are as follows. Auditdata from other nodes annot be trusted and should not beused beause the ompromised nodes an send falsi�ed data.However, the ompromised nodes have no inentives to sendreports of intrusion/anomaly beause the intrusion responsemay result in their expulsion from the network. Therefore,unless the majority of the nodes are ompromised, in whihase one of the legitimate nodes will probably be able to de-tet the intrusion with strong evidene and will respond, theabove sheme an detet intrusion even when the evideneat individual nodes is weak.

A wireless network is highly dynami beause nodes anmove in and out of the network. Therefore, while eah nodeuses intrusion/anomaly reports from other nodes, it does notrely on �xed network topology or membership informationin the distributed detetion proess. It is a simple majorityvoting sheme where any node that detets an intrusion aninitiate a response.
4.4 Intrusion ResponseThe type of intrusion response for wireless ad-ho networksdepends on the type of intrusion, the type of network pro-tools and appliations, and the on�dene (or ertainty) inthe evidene. For example, here is a few likely response:� Re-initializing ommuniation hannels between nodes(e.g, fore re-key).� Identifying the ompromised nodes and re-organizingthe network to prelude the promised nodes.For example, the IDS agent an notify the end-user, whomay in turn do his/her own investigation and take appropri-ate ation. It an also send a \re-authentiation" request toall nodes in the network to prompt the end-users to authenti-ate themselves (and hene their wireless nodes), using out-of-bound mehanisms (like, for example, visual ontats).Only the re-authentiated nodes, whih may olletively ne-gotiate a new ommuniation hannel, will reognize eahother as legitimate. That is, the ompromised/maliiousnodes an be exluded.
5. ANOMALY DETECTION IN WIRELESS

AD-HOC NETWORKSIn this setion, we disuss how to build anomaly detetionmodels for wireless networks. Detetion based on ativitiesin di�erent network layers may di�er in the format and theamount of available audit data as well as the modeling algo-rithms. However, we believe that the priniple behind theapproahes will be the same. To illustrate our approah, wefous our disussions on ad-ho routing protools.
5.1 Detecting Abnormal Updates to Routing

TablesThe main requirement of an anomaly detetion model is lowfalse positive rate, alulated as the perentage of normalyvariations deteted as anomalies, and high true positive rate,alulated as the perentage of anomalies deteted. We needto �rst determine the trae data to be used that will bear evi-dene of normaly or anomaly. For ad-ho routing protools,sine the main onern is that the false routing informationgenerated by a ompromised node will be disseminated toand used by other nodes, we an de�ne the trae data to de-sribe, for eah node, the normal (i.e., legitimate) updatesof routing information.A routing table usually ontains, at the minimum, the nexthop to eah destination node and the distane (number ofhops). A legitimate hange in the routing table an beaused by the physial movement(s) of node(s) or networkmembership hanges. For a node, its own movement and the
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Distane Diretion Veloity PCR PCH0.01 S 0.1 20 1510 S 20 80 500.02 N 0.1 0 0... ... ... ... ...Table 1: Sample Trae Data for Ad-Ho Routinghange in its own routing table are the only reliable informa-tion that it an trust. Hene, we use data on the node's phys-ial movements and the orresponding hange in its routingtable as the basis of the trae data. The physial movementis measured by distane, diretion, and veloity (this dataan be obtained by a built-in GPS devie). The routing ta-ble hange is measured by the perentage of hanged routes(PCR), and the (positive or negative) perentage of hangesin the sum of hops of all the routes (PCH). We use per-entages as measurements beause of the dynami nature ofwireless networks (i.e., the number of nodes/routes is not�xed). Table 1 shows some �tional trae data for a node.During the \training" proess, where a diversity of normalsituations are simulated, the trae data is gathered for eahnode. The trae data sets of all nodes in the training networkare then aggregated into a single data set, whih desribesall normal hanges in routing tables for all the nodes. Adetetion model whih is learned from this aggregated dataset will therefore be apable of operating on any node in thenetwork.A normal pro�le on the trae data in e�et spei�es the or-relation of physial movements of the node and the hangesin the routing table. We an use the following sheme toompute the normal pro�le:� denote PCR the lass (i.e. onept), and distane, di-retion, veloity, and PCH the features desribing theonept;� use n lasses to represent the PCR values in n ranges,for example, we an use 10 lasses eah representing10 perentage points { that is, the trae data belongsto n lasses;� apply a lassi�ation algorithm to the data to learn alassi�er for PCR;� repeat the above for PCH, that is, learn a lassi�er forPCH;A lassi�ation algorithm, e.g., RIPPER [1℄, an use themost disriminating feature values to desribe eah onept.For example, when using PCR as the onept, RIPPER anoutput lassi�ation rules in the form of: \if (distane �0.01 AND PCH � 20) then PCR = 2; else if ...". Eahlassi�ation rule (an \if") has a \on�dene" value, alu-lated as the perentage of reords that math both the ruleondition and rule onlusion out of those that math therule ondition. The lassi�ation rules for PCR and PCHtogether desribe what are the (normal) onditions that or-relate with the (amount of) routing table hanges. We usethese rules as the normal pro�les.

PCR deviation PCH deviation Class0.0 0.0 normal0.1 0.0 normal0.2 0.2 normal0.9 0.5 abnormal0.3 0.1 normal... ... ...Table 2: Sample Deviation DataCheking an observed trae data reord (that reords a rout-ing table update) with the pro�le involves applying the las-si�ation rules to the reord. A mislassi�ation, e.g., whenthe rules say it is \PCR = 3" but in fat it is \PCR = 5",is ounted as a violation. We an use the \on�dene" ofthe violated rule as the \deviation sore" of the reord. Inthe \testing" proess, the deviation sores are reorded. Forexample, if abnormal data is available, we an have devia-tion data like those shown in Table 2. We an then apply alassi�ation algorithm to ompute a lassi�er, a detetionmodel, that uses the deviation sores to distinguish abnor-mal from normal.If abnormal data is not available, we an ompute the nor-mal lusters of the deviation sores, where eah sore pair isrepresented by a point (PCR deviation, PCH deviation) inthe two-dimensional spae, e.g., (0.0, 0.0), (0.2, 0.2), (0.3,0.1), et. The \outliers", i.e., those that do not belong toany normal luster, an then be onsidered as anomalies.Clustering is often referred to as \un-supervised learning"beause the target lusters are not known a priori. Its dis-advantage is that the omputation (i.e., the formation) oflusters is very time onsuming. If the appliation envi-ronment allows a tolerable false alarm rate, e.g., 2%, thenthe lustering algorithm an be parameterized to terminatewhen suÆient, e.g., greater than 98%, points are in properlusters.A poor performane of the anomaly detetion model, e.g., ahigher than aeptable false alarm rate, indiates that thedata gathering (inluding both \training" and \testing" pro-esses) is not suÆient, and/or the features and the model-ing algorithms need to be re�ned. Therefore, repeated trialsmay be needed before a good anomaly detetion model isprodued.In the disussion thus far, we have used only the minimalrouting table information in the anomaly detetion modelto illustrate our approah, whih an be applied to all rout-ing protools. For a spei� protool, we an use additionalrouting table information and inlude new features in thedetetion model to improve the performane. For example,for DSR ad-ho routing protool [7, 13℄, we an add soureroute information (the omplete, ordered sequene of net-work hops leading to the destination). We an also add pre-ditive features aording to the \temporal and statistial"patterns among the routing table updates, following the sim-ilar feature onstrution proess we used to build intrusiondetetion models for wired networks [10℄. For example, fora wired TCP/IP network, a \SYN-ood" DOS attak has apattern whih indiates that a lot of half-open onnetionsare attempted against a servie in a short time span. A-
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ordingly, a feature, \for the past 2 seonds, the perentageof onnetions to the same servie that are half-open" wasonstruted and had been proved to be highly preditive.Similarly, in a wireless network, if an intrusion results in alarge number of routing table updates, we an add a featurethat measures the frequeny (how often) the updates takeplae.Our objetive in this study is to lead to a better understand-ing of the important and hallenging issues in intrusion de-tetion for ad-ho routing protools. First, using a given setof training, testing, and evaluation senarios, and modelingalgorithms (e.g., with RIPPER as the lassi�ation algo-rithm for protool trae data and \nearest neighbor" as thelustering algorithm for deviation sores), we an identifywhih routing protool, with potentially all its routing tableinformation used, an result in better performing detetionmodels. This will help answer the question \what informa-tion should be inlude in the routing table to make intrusiondetetion e�etive." This �nding an be used to design morerobust routing protools. Next, using a given routing proto-ol, we an explore the feature spae and algorithm spae to�nd the best performing model. This will give insight to thegeneral praties of building intrusion detetion for wirelessnetworks.
5.2 Detecting Abnormal Activities in Other

LayersAnomaly detetion for other layers of the wireless networks,e.g., the MAC protools, the appliations and servies, et.,follows a similar approah. For example, the trae data forMAC protools an ontain the following features: for thepast s seonds, the total number of hannel requests, thetotal number of nodes making the requests, the largest, themean, and the smallest of all the requests, et. The lassan be the range (in the number) of the urrent requests bya node. A lassi�er on this trae data desribes the normalontext (i.e. history) of a request. An anomaly detetionmodel an then be omputed, as a lassi�er or lusters, fromthe deviation data.Similarly, at the wireless appliation layer, the trae dataan use the servie as the lass (i.e., one lass for eah ser-vie), and an ontain the following features: for the past sseonds, the total number of requests to the same servie,the number of di�erent servies requested, the average dura-tion of the servie, the number of nodes that requested (any)servie, the total number of servie errors, et. A lassi�eron the trae data then desribes for eah servie the normalbehaviors of its requests.Many attaks generate di�erent statistial patterns thannormal requests. Sine the features desribed above are de-signed to apture the statistial behavior of the requests, theattaks, when examined using the feature values, will havelarge deviations than the normal requests. For example,ompared with normal requests to MAC or an appliation-level servie, DOS attaks via resoure exhaustion normallyinvolve a huge number of requests in a very short period oftime; a DDOS has the additional tweak that it omes frommany di�erent nodes.

6. MULTI-LAYER INTEGRATED INTRU-
SION DETECTION AND RESPONSETraditionally, IDSs use data only from the lower layers:network-based IDSs analyze TCP/IP paket data and host-based IDSs analyze system all data. This is beause inwired networks, appliation layer �rewalls an e�etivelyprevent many attaks, and appliation-spei� modules, e.g.,redit ard fraud detetion systems, have also been devel-oped to guard the mission-ritial servies.In the wireless networks, there are no �rewalls to protetthe servies from attak. However, intrusion detetion inthe appliation layer is not only feasible, as disussed in theprevious setion, but also neessary beause ertain attaks,for example, an attak that tries to reate an unauthorizedaess \bak-door" to a servie, may seem perfetly legiti-mate to the lower layers, e.g., the MAC protools. We alsobelieve that some attaks may be deteted muh earlier inthe appliation layer, beause of the riher semanti infor-mation available, than in the lower layers. For example, fora DOS attak, the appliation layer may detet very quiklythat a large number of inoming servie onnetions have noatual operations or the operations don't make sense (andan be onsidered as errors); whereas the lower layers, whihrely only on information about the amount of network traf-� (or the number of hannel requests), may take a longerwhile to reognize the unusually high volume.Given that there are vulnerabilities in multiple layers ofwireless networks and that an intrusion detetion moduleneeds to be plaed at eah layer on eah node of a network,we need to oordinate the intrusion detetion and responsee�orts. We use the following integration sheme:� if a node detets an intrusion that a�ets the entirenetwork, e.g., when it detets an attak on the adho routing protools, it initiates the re-authentiationproess to exlude the ompromised/maliious nodesfrom the network;� if a node detets a (seemingly) loal intrusion at ahigher layer, e.g., when it detets attaks to one ofits servies, lower layers are noti�ed. The detetionmodules there an then further investigate, e.g., byinitiating the detetion proess on possible attaks onad ho routing protools, and an respond to the at-tak by bloking aess from the o�ending node(s) andnotifying other nodes in the network of the inident.In this approah, the intrusion detetion module at eahlayer still needs to funtion properly, but detetion on onelayer an be initiated or aided by evidene from other layers.As a �rst ut of our experimental researh, we allow theevidene to ow from one layer to its (next) lower layer bydefault, or to a spei� lower layer based on the appliationenvironment.The \augmented" versions of the detetion model at a lowerlevel are onstruted as follows. In the \testing" proess,the anomaly deision, i.e., either 1 for \yes" or 0 for \no"from the upper layer is inserted into the deviation sore ofthe lower level, for example, (0.1, 0.1) now beomes (0.1,
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0.1, 0). In other words, the deviation data also arries theextra information passed from the upper level. An anomalydetetion model built from the augmented data thereforeombines the bodies of evidene from the upper layers andthe urrent layer and an make a more informed deision.The intrusion report sent to other node for ooperative de-tetion also inludes a vetor of the information from thelayers.With these new hanges, the lower layers now need morethan one anomaly detetion model: one that relies on thedata of the urrent layer and therefore indiretly uses ev-idene from the lower layers, and the augmented one thatalso onsiders evidene from the upper layer.The multi-layer integration enables us to analyze the attaksenario in its entirety and as a result, we an ahieve bet-ter performane in terms of both higher true positive andlower false positive rates. For example, a likely attak se-nario is that an enemy takes ontrol of the mobile unit ofa user (by physially disable him or her), and then usessome system ommands to send falsi�ed routing informa-tion. A detetion module that monitors user behavior, e.g.,via ommand usage, an detet this event and immediately(i.e., before further damage an be done) ause the detetionmodule for the routing protools to initiate the global dete-tion and response, whih an result in the exlusion of thisompromised unit. As another example, suppose the usersare responding to a �re alarm, whih is a rare event and maythus ause a lot of unusual movements and hene updatesto the routing tables. However, if there is no indiation thata user or a system software has been ompromised, eah in-trusion report sent to other nodes will have a \lean" vetorof upper layer indiators, and thus the detetion module forthe routing protools an onlude that the unusual updatesmay be legitimate.
7. CONCLUSIONWe have argued that any seure network will have vulner-ability that an adversary ould exploit. This is espeiallytrue for wireless ad-ho networks. Intrusion detetion anompliment intrusion prevention tehniques (suh as enryp-tion, authentiation, seure MAC, seure routing, et.) toimprove the network seurity. However new tehniques mustbe developed to make intrusion detetion work better for thewireless ad-ho environment.Through our ontinuing investigation, we have shown thatan arhiteture for better intrusion detetion in wireless ad-ho networks should be distributed and ooperative. A sta-tistial anomaly detetion approah should be used. Thetrae analysis and anomaly detetion should be done lo-ally in eah node and possibly through ooperation with allnodes in the network. Further, intrusion detetion shouldtake plae in all networking layers in an integrated ross-layer manner.Currently, we are ontinuing our investigation in the arhi-teture issues, the anomaly detetion model, and the multi-layer integration approah. For arhiteture study, we arere�ning its design and plan to implement it and study itsperformane impliations. For anomaly detetion model, weare studying the e�etiveness and salability of our approah

for building anomaly detetion models for ad-ho routingprotools and for other layers of wireless networking. Inpartiular, we will �rst fous on two questions about ad-horouting: what information a routing protool should inludeto make intrusion detetion e�etive, and what is the bestanomaly detetion model for a given routing protool. Fi-nally, we will study the e�etiveness gain (i.e., in detetionrate) with the multi-layer integration approah, as well asits performane penalties.
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